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Abstract: Climate models predict that tropical lower-stratospheric humidity will increase as the 16 

climate warms.  We examine this trend in two state-of-the-art chemistry-climate models.  Under 17 

high greenhouse gas emissions scenarios, the stratospheric entry value of water vapor increases 18 

by ~1 part per million by volume (ppmv) over this century in both models.  We show with 19 

trajectory runs driven by model meteorological fields that the warming tropical tropopause layer 20 

(TTL) explains 50-80% of this increase.  The remainder is a consequence of trends in 21 

evaporation of ice convectively lofted into the TTL and lower stratosphere.  Our results further 22 

show that, within the models we examined, ice lofting is primarily important on long time scales 23 

— on interannual time scales, TTL temperature variations explain most of the variations in lower 24 

stratospheric humidity.  Assessing the ability of models to realistically represent ice-lofting 25 

processes should be a high priority in the modeling community. 26 

 27 
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Introduction 29 

Air traveling from the tropical troposphere into the tropical stratosphere transits the tropical 30 

tropopause layer (TTL) [Sherwood and Dessler, 2000], and the processes within this region 31 

provide primary control over the water vapor content of the stratosphere.  In the following, we 32 

will refer to the water vapor mixing ratio of this air as H2Oentry.  Over the past two decades, it has 33 

become generally accepted that H2Oentry variability is controlled by TTL temperature variability 34 

[e.g., Fueglistaler et al., 2009; Mote et al., 1996; Randel et al., 2004; Fueglistaler et al., 2005; 35 

Dessler et al., 2014; Wang et al., 2015].  This view posits that the TTL acts like a “cold trap,” 36 

where the humidity of lower stratospheric air is determined by the coldest temperatures 37 

experienced by the air as it crossed the TTL.   38 

 39 

Climate models have long predicted that H2Oentry will increase over the next century [Gettelman 40 

et al., 2010; Kim et al., 2013], with important climatic [Forster and Shine, 1999; Solomon et al., 41 

2010; Maycock et al., 2013; Dessler et al., 2013] and chemical [Kirk-Davidoff et al., 1999] 42 

impacts.  Despite the importance of these model results, few papers have analyzed the 43 

mechanism behind the overall increase in H2Oentry. Most papers that do view the problem 44 

qualitatively, finding that the increase in H2Oentry is roughly consistent with the long-term 45 

warming of the TTL [e.g., Fueglistaler and Haynes, 2005; Oman et al., 2008; Gettelman et al., 46 

2009; Garfinkel et al., 2013].   47 

 48 

In this paper, we use a trajectory model driven by meteorology taken from climate models to 49 

quantitatively evaluate how much of the model trend in H2Oentry is due to changes in TTL 50 

temperatures and how much is due to water transport by other processes.  We find strong 51 

evidence that while much of the future trend is due to a warming TTL, a significant fraction is 52 

due to increased transport of water in the form of convectively lofted ice. 53 

 54 

Models 55 

We analyze simulations from two chemistry-climate models (CCMs).  These are similar to 56 

general circulation models, but with a more realistic stratosphere and higher vertical resolution in 57 

the TTL.  As such, we expect CCMs to do a better job simulating H2Oentry than general 58 

circulation models. 59 



 60 

GEOSCCM 61 

The Goddard Earth Observing System Chemistry Climate Model (GEOSCCM) couples the 62 

GEOS-5 general circulation model [Rienecker et al., 2008; Molod et al., 2012] to a 63 

comprehensive stratospheric chemistry module. The simulation used in this study has horizontal 64 

resolution of 2° latitude and 2.5° longitude with 72 vertical layers up to 0.01 hPa (80 km), with 65 

vertical resolution in the TTL of ~1 km.  For our estimate of the GEOSCCM’s H2Oentry, we use 66 

the tropical average (30°N-30°S) 85-hPa volume mixing ratios. Averaging over 20°N-20°S 67 

yields nearly indistinguishable results. 68 

 69 

Prior versions of GEOSCCM have been extensively evaluated as part of the Chemistry-Climate 70 

Model Validation 1 (CCMVal-1) [Eyring et al., 2006] and CCMVal-2 [SPARC CCMVal, 2010], 71 

as well as in many other analyses [Strahan et al., 2011; Douglass et al., 2012; Oman and 72 

Douglass, 2014]. In this paper, we use a simulation from 1998-2099 driven by the RCP6.0 73 

scenario for greenhouse gases [van Vuuren et al., 2011] and the A1 scenario for ozone depleting 74 

substances [World Meteorological Organization, 2011]. Sea surface temperatures and sea ice 75 

concentrations were prescribed from a CMIP5 simulation using the Community Earth System 76 

Model version 1 [Gent et al., 2011]. 77 

 78 

WACCM 79 

The Whole Atmosphere Community Climate Model (WACCM) is one of the available 80 

atmospheric components of the National Center for Atmospheric Research (NCAR) Community 81 

Earth System Model (CESM). WACCM includes processes essential to the simulation of the 82 

middle atmosphere such as nonlocal thermodynamic equilibrium radiative transfer, a non-83 

orographic gravity wave drag parameterization, and a full representation of middle atmospheric 84 

chemistry that is coupled with radiation and dynamics [Hurrell et al., 2013; Marsh et al., 2013]. 85 

The simulation used here is a specified-chemistry version of WACCM (SC-WACCM) where the 86 

concentrations of radiatively/chemically active trace gasses are specified from existing WACCM 87 

simulations with interactive chemistry [Smith et al., 2014]. SC-WACCM was run at a horizontal 88 

resolution of 1.9° x 2.5° over 1955-2100 with the RCP 8.5 greenhouse gas scenario [van Vuuren 89 

et al., 2011]. This is a higher emissions scenario than that used in the GEOSCCM run, although 90 



the effect of this on the analysis seems minor.  The WACCM simulation includes a fully coupled 91 

ocean, land surface, and sea ice model as the other CESM components.  For our estimate of the 92 

WACCM’s H2Oentry, we use the same definition as for the GEOSCCM: tropical average (30°N-93 

30°S) 85-hPa volume mixing ratios. 94 

 95 

The trajectory model 96 

We will compare estimates of H2Oentry from the CCMs to estimates from a domain-filling 97 

forward trajectory model [Schoeberl and Dessler, 2011].  In the version of the model analyzed 98 

here, an ensemble of 1350 parcels is initialized every day on an equal-area grid running from 99 

60°S to 60°N.  The parcels are initialized at 370-K potential temperature (~16 km), which is 100 

above the level of zero net radiative heating in the tropics (~355-360 K) but below the tropical 101 

tropopause (~375-380 K).  Each parcel is run forward until the parcel descends back into the 102 

troposphere, defined as pressures higher than 250 hPa (~10 km). All trajectory model runs 103 

include production of water vapor via methane oxidation, but that process is unimportant in the 104 

tropical lower stratosphere.  105 

 106 

The model uses the Bowman trajectory code [Bowman, 1993; Bowman and Carrie, 2002] to 107 

advect parcels, driven by 6-hourly instantaneous horizontal winds and 6-hourly average diabatic 108 

heating rates obtained from the GEOSCCM and WACCM runs.  Each parcel is initialized with a 109 

water vapor mixing ratio of 200 parts per million by volume (ppmv). The mixing ratio is 110 

conserved along each trajectory, except when the relative humidity (RH) over ice of the parcel 111 

exceeds a pre-determined threshold [e.g., Schoeberl and Dessler, 2011], in this paper either 112 

100% or 80%.  When parcels’ water vapor exceeds this threshold, the water vapor mixing ratio is 113 

instantly reduced until the RH equals the threshold value.  The 100% threshold is frequently used 114 

in these types of analyses, but some CCMs begin dehydration below 100% [e.g., Molod, 2012], 115 

so this gives us some idea of the sensitivity of our results to differing thresholds.  To estimate 116 

H2Oentry, we average the H2O mixing ratio of parcels between 79 and 93 hPa and between 30°N 117 

and 30°S.  Dehydration events above 93 hPa do occur, but they remove relatively small amounts 118 

of water: the water vapor mixing ratio at 79 hPa is within a few percent of the value at 93 hPa.  119 

 120 



We will refer to the model described in the previous paragraph as the 100% or 80% standard 121 

trajectory model, depending on the dehydration threshold.  Despite the simplicity of this model, 122 

it has been shown to accurately reproduce many of the details of the water vapor distribution of 123 

the stratosphere [Schoeberl and Dessler, 2011].  Table 1 lists 21st-century average H2Oentry in the 124 

standard trajectory models and the CCMs.  The standard trajectory models do a good job of 125 

reproducing the CCMs’ value  — to the extent they differ, the standard trajectory models tend to 126 

underestimate the CCMs.  Most observational comparisons focus on water vapor anomalies 127 

(departures from the mean seasonal cycle), and the standard trajectory model does an excellent 128 

job reproducing observed anomalies [Schoeberl et al., 2012; Schoeberl et al., 2013; Dessler et al., 129 

2014; Wang et al., 2015]. 130 

 131 

CCM vs. trajectory model comparison 132 

The GEOSCCM predicts a change in H2Oentry over the 21st century (hereafter ∆H2Oentry) of 0.87 133 

ppmv, while the 100% and 80% standard trajectory model driven by GEOSCCM meteorology 134 

predicts ∆H2Oentry of 0.49 and 0.39 ppmv.  The WACCM predicts ∆H2Oentry of 1.09 ppmv, while 135 

the 100% and 80% standard trajectory models driven by WACCM meteorology predicts 136 

∆H2Oentry of 0.86 and 0.70 ppmv.  For all models, ∆H2Oentry is calculated as H2Oentry averaged 137 

over 2090-2100 minus the average over 2000-2010; values are also listed in Table 1. 138 

 139 

The disagreement between the CCMs and 100% standard trajectory model is shown graphically 140 

in Fig. 1.  In the standard trajectory model, H2Oentry is entirely regulated by TTL temperature 141 

variations.  The fact that the trajectory model mostly follows the GEOSCCM’s and WACCM’s 142 

H2Oentry variations lead us to our first main conclusion: TTL temperature variations are 143 

responsible for much of the trend in H2Oentry in the CCMs over the 21st century.  However, TTL 144 

temperature variations cannot explain all of the trends.  In the GEOSCCM and WACCM, about 145 

50% and 20%, respectively, of the 21st-century trend must be due to other processes.  146 

 147 

A potential hint to explaining the discrepancy between the CCMs and the standard trajectory 148 

model is shown in Figure 2, which shows that convectively lofted ice-water content (IWC) in the 149 

GEOSCCM’s lower stratosphere increased significantly during the 21st century.  Convectively 150 

lofted IWC at 100 hPa more than doubles during the 21st century and increases by a factor of 151 



about four at 85 hPa.  The WACCM (not shown) only provides total IWC (the sum of convective 152 

and in situ ice) and that also shows an increase over the 21st century.  153 

 154 

The convective injection of ice into the lower stratosphere, above the trajectories’ Lagrangian 155 

cold-point (LCP), where it can evaporate and moisten the stratosphere [e.g., Dessler et al., 2007; 156 

Schoeberl et al., 2014; Ueyama et al., 2015] may be the process missing from the standard 157 

trajectory model. LCPs in the 100% standard trajectory runs are found between 110 and 70 hPa, 158 

so the observations of convective ice at 100 and 85 hPa are consistent with this hypothesis. 159 

 160 

To test this idea, we run a second version of the trajectory model that includes the effects of 161 

convectively lofted ice, hereafter referred to as the “trajectory+ice model”.  In this model, we 162 

take the CCMs’ 6-hourly three-dimensional ice-water content (IWC) field and interpolate it onto 163 

each trajectory time step by linear interpolation in both time and space.  At each time step, we 164 

assume complete evaporation of this ice into the parcel by adding the CCM’s IWC to the parcel’s 165 

water vapor, although we do not let parcels’ RH exceed the RH threshold, either 100% or 80%.  166 

Because we assume instant evaporation of the ice, we consider this to be an upper limit of the 167 

impact of convective ice evaporation on the water content of the TTL and lower stratosphere.   168 

 169 

Figure 1 shows that ∆H2Oentry from the 80% trajectory+ice model’s agrees more closely with the 170 

CCMs than either standard trajectory model (also seen in Table 1).  The 100% trajectory+ice 171 

model (not shown) predicts slightly higher values of ∆H2Oentry (Table 1).  We noted above that 172 

the WACCM combines convective and in situ ice into one IWC variable, and we use that in the 173 

WACCM trajectory+ice model.  While this likely causes an overestimate of the evaporated ice in 174 

the WACCM-based trajectory models, it may not be significant because in situ clouds tend to 175 

exist mainly in regions where RH is at or near saturation, so those clouds tend not to be 176 

evaporating.  Table 1 also shows that the trajectory+ice models predict higher absolute values of 177 

H2Oentry than the CCMs, consistent with the idea that the trajectory+ice model is an upper limit 178 

on the effect of convective ice lofting. 179 

 180 

Figure 3 shows the spatial pattern of the change in H2O mixing ratio at 100 hPa in the CCMs and 181 

two trajectory models over the 21st century.  It is clear that the trajectory+ice model more 182 



accurately reproduces the spatial pattern found in both CCMs.  The WACCM comparisons are of 183 

particular interest.  For WACCM, the standard trajectory model actually does a reasonable job 184 

simulating the tropical average (e.g., Fig. 1 and Table 1), but Fig. 3 shows that it does a poor job 185 

simulating the spatial distribution of water.  The trajectory+ice model, on the other hand, does a 186 

slightly better job simulating the tropical average, but a much better job reproducing the spatial 187 

distribution.  The distribution at 85 hPa (not shown) also shows that the trajectory+ice model 188 

does a better job simulating the spatial distribution of H2O.   189 

 190 

Are observations consistent with this result? 191 

We have demonstrated that convective ice lofting plays a key role in the long-term evolution of 192 

H2Oentry in the CCMs.  One obvious question is whether observations are consistent with this.  193 

There have been many observational studies showing that convection penetrates into the tropical 194 

lower stratosphere [Alcala and Dessler, 2002; Dessler, 2002; Liu and Zipser, 2005; Dessler et al., 195 

2006; Rossow and Pearl, 2007], and there is also evidence that convective injection plays a role 196 

regulating the stratospheric water vapor budget [Moyer et al., 1996; Keith, 2000; Johnson et al., 197 

2001; Kuang et al., 2003; Hanisco et al., 2007; Corti et al., 2008; Khaykin et al., 2009; Schoeberl 198 

et al., 2014; Ueyama et al., 2015].   199 

 200 

At the same time, many other analyses have concluded that observed H2Oentry variations over the 201 

last decade or so can be entirely explained by TTL temperature variations [e.g., Fueglistaler et 202 

al., 2009; Mote et al., 1996; Randel et al., 2004; Fueglistaler et al., 2005; Dessler et al., 2014; 203 

Wang et al., 2015].  This suggests a minor role for convective ice lofting, potentially 204 

contradicting results suggesting that convective lofting of ice is important.   205 

 206 

We can reconcile this seeming disparity by noting that observational studies necessarily cover 207 

short time periods.  Over such short periods, the CCMs confirm that TTL temperature variations 208 

are indeed the main regulator of H2Oentry.  This can be seen in Figure 4, which shows monthly 209 

H2Oentry anomalies from 2045-2055 from the CCMs agree with those from both the 100% 210 

standard trajectory model and the 80% trajectory+ice model.  The clear message is that, while 211 

convective ice lofting is important for the long-term trend in H2Oentry in the CCMs, it does not 212 

play an important role in the CCMs’ short-term interannual variations.  Thus, previous 213 



conclusions that TTL temperature variability explains H2Oentry variability — based on a decade 214 

or so of data — should not be used to dismiss the potential importance of ice lofting in 21st-215 

century trends.   216 

 217 

Nevertheless, the CCMs’ predictions of ice lofting into the lower stratosphere have not been 218 

quantitatively tested against observations.  The CCMs’ predictions rely on their convective 219 

parameterizations, and until verified with observations, one can reasonably question the realism 220 

of their representation of the infrequent but intense convective systems that penetrate the 221 

stratosphere.  In addition, the vertical resolution of the CCMs may not correctly resolve the top 222 

of convection, which could also bias the CCMs’ simulations.  Validation of ice lofting in the 223 

CCMs should therefore be a high priority for the scientific community. 224 

 225 

Conclusions 226 

In this paper, we examine the long-term trend in H2Oentry, the humidity of air entering the tropical 227 

stratosphere, in two state-of-the-art chemistry-climate models (CCMs).  The two models, the 228 

GEOSCCM and WACCM, both predict H2Oentry will increase over the 21st century by ~1 ppmv.   229 

 230 

One hypothesis is that this trend is caused by a warming tropical tropopause layer (TTL). We test 231 

this by comparing H2Oentry from the CCM to that predicted by our trajectory models driven by 232 

the CCMs’ meteorology.  The trajectory model sets water in each parcel to the minimum 233 

saturation mixing ratio the parcel experienced as it transited the TTL.  We find that the warming 234 

of the TTL during the 21st century does indeed increase H2Oentry, but explains only 50-80% of the 235 

CCMs’ trends in H2Oentry. The remainder of the CCMs’ trends in H2Oentry must therefore be due 236 

to other processes. 237 

 238 

We identify the other process to be an increase in convectively lofted ice.  If lofted above the 239 

Lagrangian cold point, the ice evaporates and moistens the stratosphere.  Supporting this 240 

hypothesis is the fact that the CCMs predict increases in convectively lofted ice in the lower 241 

stratosphere.  We tested the impact of this process by modifying the trajectory model to allow for 242 

the evaporation of convective ice.  This trajectory+ice model does a much better job simulating 243 

both the magnitude of the 21st century trends and the spatial pattern.   244 



 245 

We believe that solid evidence exists that trends in convectively lofted ice evaporation drives a 246 

significant part of the 21st-century trend in H2Oentry in the CCMs.  This is mainly a long-term 247 

effect — on short time scales, the CCMs and trajectory models agree that TTL temperature 248 

variability drives most of the H2Oentry variability.  This makes quantifying the impact of ice 249 

lofting in observational records difficult because observational records are generally too short for 250 

ice lofting to play a major role.  Nevertheless, the importance of ice lofting on the long-term 251 

evolution of H2Oentry in CCMs should provide ample motivation to the community to study the 252 

fidelity of the CCMs’ representation of this process. 253 
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Figure captions 380 
 381 
Figure 1. Time series of ∆H2Oentry from (a) the GEOSCCM and two trajectory model runs driven 382 

by GEOSCCM meteorology and (b) from the WACCM and two trajectory model runs driven by 383 

WACCM meteorology.  ∆H2Oentry is calculated by subtracting the average of the first 10 years 384 

from each time series. 385 

 386 

Figure 2.  Annual and tropical average convectively lofted ice mixing ratio in parts per billion by 387 

volume (ppbv) from the GEOSCCM at 100 hPa (blue line, right-hand axis) and 85 hPa (red line, 388 

left-hand axis). 389 

 390 

Figure 3.  The spatial distribution of the change in H2O over the 21st century at 100 hPa, 391 

calculated as the difference between the average of the last and first decades.  Left column: 392 

GEOSCCM (top), GEOSCCM 80% trajectory+ice model (middle), GEOSCCM 100% standard 393 

trajectory model (bottom).  Right column: the same quantities, but from WACCM.  Each 394 

column’s color bar is located at the bottom of the column. 395 

 396 

Figure 4.  Comparison between the CCMs, 100% standard trajectory model, and 80% 397 

trajectory+ice model over one decade (2045-2055).  Quantities plotted are anomalies, which are 398 

the departures from that decade’s mean annual cycle. 399 
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Table 1. Water vapor comparison between CCMs and trajectory model runs.  The first column is 401 
H2Oentry averaged over the 21st century.  The second column is (∆H2Oentry) is the change in 402 
H2Oentry over the 21st century. The trajectory model listed under GEOSCCM use GEOSCCM 403 
meteorology while those listed under WACCM use WACCM meteorology.  404 
Model	 21st‐century	

avg.	H2Oentry	
(ppmv)	

∆H2Oentry	
(ppmv)	

GEOSCCM	 4.1	 0.87	
100%	standard	trajectory	 4.2	 0.49	
	80%	standard	trajectory	 3.3	 0.39	
	100%	trajectory+ice	 5.8	 1.14	
	80%	trajectory+ice	 4.7	 0.92	

WACCM	 4.7	 1.09	
	100%	standard	trajectory	 4.0	 0.86	
	80%	standard	trajectory	 3.2	 0.70	
	100%	trajectory+ice	 6.5	 1.20	
	80%	trajectory+ice	 5.2	 0.98	
 405 
  406 
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